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Abstract. Nonlocal nonlinear Schrödinger equations are considered as models of liquid heliumII.
The models contain a nonlocal interaction potential that leads to a phonon–roton-like dispersion
relation. Also, a higher-order term in the local density approximation for the correlation energy
is introduced into the model to overcome nonphysical mass concentrations. These equations are
solved for straight-line vortices. It is demonstrated that the parameters of the equation can be
chosen to bring into agreement the vortex core parameter and the healing length. The structure of
vortex rings of large radius is studied. The family of the vortex rings of different radii propagating
with different velocities is found numerically. As the velocity of the vortex ring reaches the Landau
critical velocity the sequence of rings terminates.

1. Introduction

This is the sixth in a series of papers devoted to the Bose condensate as applied to superfluid
helium and especially superfluid vortices; see Roberts and Grant (1971), Grant (1973), Grant
and Roberts (1974), Jones and Roberts (1982), and Joneset al (1986). These will be referred
to below, as papers I–V, respectively.

As liquid helium is cooled through 2.17 K it undergoes a phase transition to a superfluid
state and remains in this state down to 0 K at the vapour pressure. Helium at 0 K has large
interatomic spacing and is often described in terms of a weakly interacting Bose gas. The
imperfect Bose condensate in the Hartree approximation is governed by equations that were
derived by Gross and by Ginsburg and Pitaevskii. In terms of the single-particle wavefunction
ψ(x, t) for N bosons of massM, the time-dependent self-consistent field equation is

ih̄ψt = − h̄2

2M
∇2ψ +ψ

∫
|ψ(x′, t)|2V (|x− x′|) dx′ (1)

where V (|x − x′|) is the potential of the two-body interactions between bosons. The
normalization condition is∫

V

|ψ |2 dx = N. (2)

The Madelung transformation for the mass probability densityρ

ρ = Mψψ∗ (3)

and for the mass fluxj = ρv

j = h̄

2i
(ψ∗∇ψ − ψ∇ψ∗) (4)

0305-4470/99/305611+15$30.00 © 1999 IOP Publishing Ltd 5611



5612 N G Berloff and P H Roberts

converts (1) into equations of continuity and motion. The internal energy per unit volume,E ,
at pointx and timet is given by

E(ρ) = h̄2

8M2ρ
(∇ρ)2 +

1

2M2

∫
ρ(x)V (|x− x′|)ρ(x′) dx′ (5)

and the total energy,W , is

W =
∫
E(ρ) dx =

∫
h̄2

8M2ρ
(∇ρ)2 dx +Wc(ρ). (6)

The first term on the right-hand side of (6) describes the quantum kinetic energy of a Bose gas
of nonuniform density;Wc(ρ) is a potential or correlation energy that incorporates the effect of
interactions. For a weakly interacting Bose system (1) is simplified by replacingV (|x− x′|)
with aδ-function repulsive potential of strengthW0 =

∫
U dx′, since we can consider that the

wavefunction,ψ(x, t), changes very slowly on atomic distances:

ih̄ψt = − h̄2

2M
∇2ψ +W0ψ |ψ |2. (7)

Some aspects of superfluid behaviour, such as the annihilation of vortex rings (see
paper IV), the nucleation of vortices (Frischet al 1992), and vortex line reconnection (Koplik
and Levine 1993, 1996) are captured by this local model. At the same time the dispersion
relation between the frequency,ω, and wavenumber,k, of sound waves according to (7) is

ω2 = c2k2 +

(
h̄

2M

)2

k4 (8)

where

c = (W0ρ∞)
1
2 /M. (9)

This dispersion relation has no roton minimum, which is held responsible for many of the
properties of a superfluid. The natural way of incorporating the correct phonon–roton-like
spectrum would be to consider a more general model (1) with a realistic two-particle potential,
V , that leads to a dispersion relation close to experimental reality. Unfortunately, as was
shown by Berloff (1999), under the very minimum requirements on such a potential, such
as the correct position of the roton minimum and the correct bulk normalization, the general
model (1) has nonphysical features, such as the loss of hyperbolicity leading to the creation of
nondissipative mass concentrations.

A more accurate approach in modelling liquid helium is through density-functional
theory (Dalfovoet al 1995), which attempts to give an adequate microscopic description of
interactions. In this approach the total energy (6) is still written as a functional of the one-body
density, but it includes short-range correlations (Dupont-Rocet al 1990). This approach has
provided a quantitatively and qualitatively reliable representation of the superfluid properties
of free surfaces, helium films, and droplets (see Dalfovoet al 1995 and references therein).
At the same time this approach is phenomenological and results in rather complicated forms
of the energy functionals with many parameters that are chosen to reproduce liquid helium
properties.

Our goal is to modify the nonlocal model (1) in the spirit of a density-functional approach,
but to restrict ourselves to only one additional nonlinear term in the expression for the
correlation energy. This allows us to remedy the nonphysical features of model (1), while not
only retaining an adequate representation of the Landau dispersion relation, but also simplicity
in the analytical and numerical studies. One of the main objectives is to elucidate the properties
of vortex rings.
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2. Nonlocal model

The correlation energy of the Skyrme interactions in nuclei (Vautherin 1972) is given by

Wc(ρ) = 1

M2

∫ [
W0

2
ρ2 +

W1

2 +γ
ρ2+γ +W2(∇ρ)2

]
(10)

whereW0,W1,W2 andγ are phenomenological constants. The first two terms give a local
density approximation, and the gradient term corresponds to finite-range interactions. In
a somewhat similar way to Dupont-Rocet al (1990), we add the necessary nonlocality of
interactions directly into the first term of (10) by introducing a two-body interaction potential,
V (|x− x′|), so that (10) becomes

Wc(ρ) = 1

M2

∫ [
1

2

∫
ρ(x)V (|x− x′|)ρ(x′) dx′ +

W1

2 +γ
ρ2+γ

]
dx. (11)

This incorporates and generalizes theW2 interaction term in (10), which has therefore been
abandoned. The differences in our expression for the correlation energy and the one used by
Dupont-Rocet al (1990) and Dalfovoet al (1995) are, first, that we keep the higher-order
term of the local density approximation unchanged and second, that the two-body interaction
potential is not assumed to be the standard Lennard-Jones potential; instead,V (|x− x′|) will
be chosen so that the implied dispersion relation gives a good fit to the Landau dispersion
curve. Following Jones (1993) we consider a potential of the form

V (|x− x′|) = V (r) = (α + βA2r2 + δA4r4) exp(−A2r2) (12a)

and the slightly modified potential

V (|x− x′|) = V (r) = (α + βA2r2 + δA4r4) exp(−A2r2) + η exp(−B2r2) (12b)

whereA,B, α, β, δ andη are parameters that can be chosen to give excellent agreement with
the experimentally determined dispersion curve.

On adopting (11), we find that the nonlinear Schrödinger equation replacing (1) is

ih̄ψt = − h̄2

2M
∇2ψ +

ψ

M

∫
|ψ(x′, t)|2V (|x− x′|) dx′ +

ψW1

M
|ψ |2(1+γ ). (13)

If Ev is the average energy level per unit mass of a boson, we write

9 = exp(iMEvt/h̄)ψ (14)

so that (13) becomes

ih̄9t = − h̄2

2M
∇29 +

9

M

(∫
|9(x′, t)|2V (|x− x′|) dx′ +W1|9|2(1+γ ) −MEv

)
. (15)

Casting this equation into dimensionless form by the transformation

x→ h̄

(2M2Ev)1/2
x t → h̄

2MEv
t (16)

we obtain

−2i
∂9

∂t
= ∇29 +9

[
1−

∫
|9(x′)|2V (|x− x′|) dx′ − χ |9|2(1+γ )

]
(17)

where the nondimensional parameterχ is given by χ = W1ρ
1+γ
∞ /M2Ev and the

nondimensional constant in front of the integral was absorbed intoV . The bulk normalization
condition is ∫

V (|x− x′|) dx′ = 1− χ (18)
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or

4π
∫ ∞

0
V (r)r2 dr = 1− χ. (19)

To determine the dispersion relation we linearize the solution of9 about the rest state
9 = 1. We write9 = 1 + ε9 ′r + ε9 ′i , where9 ′r and9 ′i are real and imaginary parts of9 ′,
respectively, and consider plane waves of the form9 ′r = exp i(ωt − kx) for ε � 1. Then the
dispersion relation can be written as

ω2 = 1
4k

4 + 2πk
∫

sinkrV (r)r dr + 1
2(1 +γ )χk2. (20)

The bulk normalization condition (18) gives the slope at the origin (the dimensionless speed
of sound) as

√
(1 +γχ)/2. Since the known speed of sound is approximately 238 m s−1, the

unit of length (healing length) of our model is [L] = 0.471
√

1 +γχ Å and the unit of time is
[t ] = 1.4× 10−13(1 + γχ) s. The parametersα, β andδ of the nonlocal potential (12a) are
chosen so that the bulk normalization condition (19) is satisfied and the dispersion relation has
the position of the roton minimum close to that experimentally observed at the vapour pressure
krot = 1.926 Å−1, ωrot = 8.62 KkB/h̄ (Donnellyet al 1981), which in our nondimensional
units is atkrot = 0.9077

√
1 +γχ , ωrot = 0.158(1 + γχ). The free parameterA in (12a) is

chosen with three requirements in mind: (i) the entire dispersion curve (20) gives a reasonable
fit to the Landau dispersion curve, (ii) two-particle interactions exhibit a strong repulsion at
close distances, and (iii) the potentialV (r) is nonzero on the smallest possible interval, in
order to make the numerics tractable.

The controversy in the literature (see Brooks and Donnelly 1977 and references therein)
about the form of the dispersion curve at low momenta has now been settled, and it is generally
accepted that the dispersion relation has a positivek3 term (the dispersion curve at the origin
is concave up) until the pressure reaches some threshold at which the second derivative ofω

at the origin changes sign. The potential (12a) implies a negativek3 term and the coefficients
η andB in (12b) can be chosen so that the resulting dispersion relation has a positivek3 term,
for instance, the same as the Bogoliubov spectrum (8). At the same time, to obtain the roton
minimum,B must be much smaller thanA, and this makes the potential more nonlocal and
less amenable for numerical work. In (12b) for χ = 3.5 andγ = 1, we tookA = 1.6,B = 1,
α ≈ 1.9123,β ≈ −28.9815,δ ≈ 9.5, andη ≈ 1. We analysed the problem (17) for two
possible choices of the parameterγ . First, we can view the termW1ρ

2+γ in (10) as the second
term in the nonlinear expansion of the correlation energyEc(ρ) the in powers ofρ, and that
yields γ = 1 (cf the expression for the Hamiltonian in Dalfovoet al (1995)). The second
possible choice is to takeγ = 2.8, which gives the velocity,c, of long-wavelength sound
waves proportional toρ2.8. This brings about agreement with the experimentally determined
Grüneisen constantUG = (ρ∂c/∂ρc)T ≈ 2.8 (Brooks and Donnelly 1977 and references
therein).

3. Rectilinear vortex

Jones (1993) computed the structure and energy per unit length of the straight-line vortex of
the nonlocal model (1) with the potential (12a). The approach of the fluid density (3) to the
uniform state at infinity was shown to be oscillatory rather than monotonic, in a similar way
to the observations (Saddet al 1997). The energy per unit length is considerably reduced
compared with that of the local model (7), and is in better agreement with the results of
experiments on vortex rings of large radius (Rayfield and Reif 1964). Nevertheless, this model
failed to bring the vortex core parameter (see (34) below) and the healing length into agreement.



Motions in a bose condensate: VI 5615

In this section we shall conduct an analysis similar to that of Jones but for the straight-line
vortex of the nonlocal model (17) for bothγ = 1 andγ = 2.8.

In cylindrical polar coordinates(r, θ, z) the nonlocal model (17) takes the form:

−2i9t = 9rr +
1

r
9r +

1

r2
9θθ +9zz +9

(
1− χ |9|2(1+γ ) −

∫ ∞
0

∫ ∞
−∞

∫ 2π

0
|9(r ′, θ ′, z′)|2

×V
(√

r2 + r ′2 − 2rr ′ cos(θ − θ ′) + (z− z′)2
)
r ′ dθ ′ dz′ dr ′

)
. (21)

The equation for the amplitude of the steady straight-line vortexR(r) is found by substituting
9 = R(r) exp iθ into (21) and integrating the nonlocal potential inθ ′ andz′:

R′′(r) +
1

r
R′(r)− R(r)

r2
+R(r)− χR(r)2(1+γ )+1

= 2π3/2

A
R(r)

∫ ∞
0
R(r ′)2 exp(−A2(r2 + r ′2))[g0I0(σ )− g1I1(σ )]r

′ dr ′ (22)

where

g0 = α +
β

2
+

3δ

4
+A2(β + δ)(r2 + r ′2) + δA4((r2 + r ′2)2 + 4r2r ′2) (23)

g1 = σ(β + 2δ) + 4δA4rr ′(r2 + r ′2) σ = 2A2rr ′. (24)

In (22), In is the modified Bessel function of ordern. Analysis of (22) shows thatR(r) ≈
1− 1/2r2 asr →∞.

Equation (22) was solved iteratively using a finite-difference method. Figure 1 gives plots
of the relative densityρ/ρ0 = R2 as functions of the distance from the centre of the vortex
for the local model (7), the nonlocal model (17) with the potential (12b) for γ = 1, χ = 3.5,

0 2 4 6 8 10 12
r

0.2

0.4

0.6

0.8

1

1.2

Figure 1. The relative densityρ/ρ0 as functions of the distance from the centre of the vortex for
the local model (7) (dashed curve), the nonlocal model (17) with the potential (12b) for γ = 1,
χ = 3.5, δ = 1 (solid curve) and forγ = 2.8,χ = 1.25,δ = −5 (dotted curve).
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δ = 1 and forγ = 2.8, χ = 1.25, δ = −5. The graph for the nonlocal model (17) with
γ = 1 is in a good agreement with the results of variational Monte Carlo calculations (Sadd
et al 1997).

To determine the energy of the vortex in the condensate we restore dimensional units
temporarily. Following Jones and Roberts (paper IV) we denote by9u the wavefunction of
the undisturbed system of the same mass, so that∫

V

|9|2 dx = 92
uv (25)

wherev = ∫
V

dx, and by9∞ the wavefunction of the bulk:9 → 9∞ asr →∞. The energy
of the system is

E = h̄2

2M

∫
V

|∇9|2 dx +
1

2M

∫
V

(92
∞ − |9|2)V (|x− x′|)(92

∞ − |9(x′)|2) dx′ dx

+
W1

M

[ ∫
V

|9|2(2+γ ) dx−92(2+γ )
u v

]
. (26)

The last term on the right-hand side can be written∫
V

|9|2(2+γ ) dx−92(2+γ )
u v =

∫
V

|9|2(2+γ ) dx− v
[

1

v

∫
V

(|9|2 −92
∞) dx +92

∞

]2+γ

(27)

so that in nondimensional units

E = 1
2

∫
V

|∇9|2 dx + 1
4

∫
V

(1− |9(x)|2)V (|x− x′|)(1− |9(x′)|2) dx′ dx

+
χ

2(2 +γ )

[ ∫
V

|9|2(2+γ ) dx−
(
M
v

+ 1

)2+γ

v

]
(28)

where the excess mass,M, is given by

M =
∫
V

(|9|2 − 1) dx. (29)

Forγ = 1 (27) can be further simplified by writing∫
V

|9|6 dx−96
uv =

∫
V

(|9|2 −92
∞)

3 dx− (92
u −92

∞)
3v

+392
∞

[ ∫
V

(92
∞ − |9|2)2 − (92

∞ −92
u)

2v)

]
. (30)

The terms(92
∞ − 92

u)
2v and(92

∞ − 92
u)

3v are O(1/v) and vanish asv →∞. In this limit,
the dimensionless energy becomes

E1 = 1
2

∫
V

|∇9|2 dx + 1
4

∫
V

(1− |9(x)|2)V (|x− x′|)(1− |9(x′)|2) dx′ dx

+
χ

6

[ ∫
V

(|9|2 − 1)2(2 + |9|2) dx

]
. (31)

Expressions (31) and (28) give the energy per unit length of the line vortex in dimensional
units as

E1 = κ2ρ∞
4π

(∫ ∞
0

[(
dR

dr

)2

+
R2

r2

]
r dr +

π3/2

A

∫ ∞
0

∫ ∞
0
(1− R2(r)) exp[−A2(r2 + r ′2)]

×[g0I0(σ )− g1I1(σ )](1− R2(r ′))rr ′ dr ′ dr +
χ

3

∫ ∞
0
(R2 − 1)2(2 +R2)r dr

)
(32)
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and

Eγ = κ2ρ∞
4π

(∫ ∞
0

[(
dR

dr

)2

+
R2

r2

]
r dr +

π3/2

A

∫ ∞
0

∫ ∞
0
(1− R2(r)) exp[−A2(r2 + r ′2)]

×[g0I0(σ )− g1I1(σ )](1− R2(r ′))rr ′ dr ′ dr

+
χ

2 +γ
lim
a→∞

[ ∫ a

0
R2(2+γ )r dr −

(∫ a

0
R2r dr

)2+γ (
a2

2

)−(1+γ ) ])
. (33)

The second term in the first integral in (32) and (33) represents the classical kinetic energy
that diverges. This can be remedied by introducing a cut-off distanceb, corresponding to the
characteristic size of the container, so that the energy per unit length of the line vortex can be
expressed in the form

E = κρ∞
4π

[
ln

(
b

L

)
− c

]
(34)

whereL is the healing length and for our modelL = 0.471
√

1 +χγ Å, andc can be determined
numerically from (32) or (33).

4. Large vortex rings

We consider solitary wave solutions of (17) that correspond to circular vortex rings that
propagate along thez-axis with nondimensional velocityU preserving their forms. The
wavefunction of such solitary waves satisfies the following equation:

2iU
∂9

∂z
= ∇29 +9

(
1−

∫
|9(x′)|2V (|x− x′|) dx′ − χ |9|2(1+γ )

)
. (35)

We can perform a variation9 → 9 + δ9 in the expressions for momentum

p = 1

2i

∫
[(9∗ − 1)∇9 − (9 − 1)∇9∗] dx (36)

and energy (28) and using (35) show thatδE = Uδp, or

U = ∂E
∂p
. (37)

For a vortex ring of large radiusR the results for the straight-line vortex can be used to give
(see papers I and IV) the energy and momentum of such a ring as

E = 1

2
κ2ρ∞R

[
ln

(
8R

L

)
− 2 + c

]
(38)

and

p = κρ∞πR2. (39)

After differentiatingE andp with respect toR and substituting into (37) we get the expression
for the velocity of the large vortex ring as

U = κ

4πR

[
ln

(
8R

L

)
− 1 + c

]
. (40)

Glaberson and Donnelly (1986) used the experimental results of Rayfield and Reif (1964)
on the relation between the energy and velocity of large vortex rings to estimate the vortex
core parameterL. These estimates were based on the hollow core vortex model withc = 0
and producedL ≈ 0.81 Å. Jones (1993) did similar calculations for the nonlocal model (1)
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with the potential (12a) and foundc = −0.13, so thatL ≈ 0.71 Å for the optimal choice
of the parameterA. For the local model (7) withc = 0.381 the vortex core parameter is
L ≈ 1.19 Å. These values ofL are much larger that the healing length found from the sound
speed, which is 0.47 Å for any of the above models. Jones (1993) posed the question of whether
a self-consistent theory is possible, i.e., one where the vortex core parameter and the healing
length are brought into harmony. The answer is ‘Yes’. Our model (17) is able to bring about
agreement. Forγ = 1, χ = 3.5,A = 1.6,B = 1, andη = 1 we numerically integrated (22)
to find c = 0.1825, so thatL ≈ 1 Å, which is the healing length of our model. This gives the
energy of a vortex ring travelling at 27 cm s−1 as 10 eV, which agrees with the experiments of
Rayfield and Reif (1964).

5. Rarefaction waves

Jones and Roberts (paper IV) determined the entire sequence of solitary waves numerically for
the local condensate model (7). They calculated the energyE and momentump and showed
how the location of the sequence in theE–p plane relates to the superfluid helium dispersion
curve. They found two branches meeting at a cusp wherep andE assume their minimum
values,pm andEm. Asp →∞ on each branch,E →∞. On the lower branch the solutions
were asymptotic to the large vortex rings of section 4. Since the local model has a healing
length (based on the sound velocity) different from the vortex core parameter there are two
possible ways to introduce dimensional units and to plot the solitary wave sequence next to
the Landau dispersion curve on theE–p plane. If the dimensional units based on the vortex
core parameter are chosen, the cusp lies just above the Landau dispersion curve; if instead
the healing length (sound speed) is selected the cusp meets the dispersion curve of the local
model, which (we recall) does not have a roton branch.

As E andp decrease from infinity along the lower branch, the solutions begin to lose their
similarity to large vortex rings, and (38)–(40) determineE , p, andU less and less accurately,
although (37) still holds. Eventually, for a momentump0 slightly greater thanpm, the rings lose
their vorticity (9 loses its zero), and thereafter the solitary solutions may better be described
as ‘rarefaction waves’. The upper branch consists entirely of these and, asp → ∞ on this
branch, the solutions asymptotically approach the rational soliton solution of the Kadomtsev–
Petviashvili (KP) equation.

In this section we investigate the rarefaction wave sequence of the nonlocal model (17).
We only consider the limit of small amplitude solitary waves (p → ∞). For simplicity we
suppose thatγ = 1. We substitute9 = f + ig, where

f = 1 + ε2f1 + ε4f2 + · · ·
g = εg1 + ε3g2 + · · · (41)

into (35) and separate real and imaginary parts. We stretch the independent variables

ξ = ε2x η = ε2y ζ = εz
and expandU in powers ofε as

U = U0 + ε2U1 + ε4U2 + · · · . (42)

Notice that the asymptotics of the integral on the right-hand side of (35) with the potentials
(12a) or (12b) can be found as

1

ε5

∫
φ(ξ ′, η′, ζ ′)U

(√
(ξ − ξ ′)2
ε4

+
(η − η′)2
ε4

+
(ζ − ζ ′)2

ε2

)
dζ ′ dη′ dξ ′

= µ1φ(ξ, η, ζ ) + ε2µ2φζζ (ξ, η, ζ ) (43)
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where

µ1 =
[
α +

3

2
β +

15

4
δ

]
π3/2

A3
µ2 =

[
4α + 10β + 35δ

16

]
π3/2

A5
. (44)

From the bulk normalization condition (19),µ1 = 1 − χ . To leading order, the real and
imaginary parts of (35) give

2U0
∂g1

∂ζ
= (1 +χ)(2f1 + g2

1) (45)

−2U0
∂f1

∂ζ
= −∂

2g1

∂ζ 2
+ (2f1 + g2

1)g1(1 +χ) (46)

so that

U0 =
√
(1 +χ)/2 2f1 + g2

1 =
√

2(1 +χ)∂g1/∂ζ. (47)

To the next order we have√
2(1 +χ)g′2 + 2U1g

′
1 = −f ′′1 + (1 +χ)(2f2 + 2g1g2 + f 2

1 )

+(1 +χ)f1(2f1 + g2
1) +µ2(2f1 + g2

1)
′′ + χ(2f1 + g2

1)
2 (48)

and

−
√

2(1 +χ)f ′2 − 2U1f
′
1 = −g′′2 −∇2

Hg1 + g2(1 +χ)(2f1 + g2
1)

+(1 +χ)g1(2f2 + 2g1g2 + f 2
1 ) + g1µ2(2f1 + g2

1)
′′ + χ(2f1 + g2

1)
2 (49)

where primes denote the partial derivative inζ and∇2
H = ∂2/∂ξ2 + ∂2/∂η2. If we define

D1 = 2f2 + 2g1g2 + f 2
1 andD2 = ∂(g2 − f1− 1/3g3

1)/∂ζ then from (45)–(47)

U0D1−D2 = U1

U0
g′1−

1

2
χg′1g

2
1 +

χ3 + 5χ2 − 2χ − 2

2
√

2(1 +χ)3/2
(g′1)

2

+
χ√

2
√

1 +χ
g1g
′′
1 +

1− 2µ2

2(1 +χ)
g′′′1 (50)

∂

∂ζ
(U0D1−D2) = ∇2

Hg1− χ

U0
g1g
′
1−

(χ − 1)χ

χ + 1
g1(g

′
1)

2 − U1

U0
g′′1

−χ
2
g2

1g
′′
1 +U0(4 +χ)g′1g

′′
1 +

χ√
2
√

1 +χ
g1g

(3)
1 . (51)

Consistency of these equations leads to a KP-type equation for the functiong1:

2
√

2U1g
′′
1 −

√
1 +χ∇2

Hg1 +
∂

∂ζ

[
1− 2µ2

2
√

1 +χ
g
(3)
1 −

√
2(3 + 5χ)

2(1 +χ)
(g′1)

2 +

√
2

2
χg2

1

]

− 2χ√
1 +χ

(g′1)
2g1 = 0. (52)

The corresponding equation governingg1 for the local model (7) was obtained by Jones
and Roberts (paper IV) and can be recovered from (52) by takingχ = 0, µ2 = 0. The KP
equation usually arises in studies of the propagation of sound waves in a weakly dispersive
medium (for discussion and references see Kuznetsov and Musher 1986). Two types of the
KP equations are distinguished. If the expansion of the dispersion law in the long-wave region
is convex (ω′′(k) > 0 for smallk) the dispersion is positive and the coefficients of the highest
order term and the∇2

H term have opposite signs; this corresponds to the KP I equation. If the
dispersion relation is concave at smallk the dispersion is called negative and the coefficients
have the same sign; this leads to the KP II equation.
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Superfluid4He has positive dispersion if the pressure lies below some threshold, and
has negative dispersion above that threshold. This difference changes the wave dynamics
dramatically. The most important change is that the KP II equation has no multidimensional
solitons, while the KP I equation possesses such solutions, although they are unstable in three
dimensions, as can be shown from Lyapunov’s theorem (Kuznetsov and Musher 1986). The
nonlocal model (17) with the potential (12a) has negative dispersion at low momenta and (52)
is a KP II equation (µ2 >

1
2), which does not have a solitary wave solution in the limit of

U → U0. At low pressures the potential (12b) can be used and (52) becomes a KP I equation
with an upper branch of solutions similar to the local model.

6. Stretched dipole moment, impulse and energy for solitary waves

In this section we define the stretched dipole moment and impulse for the solitary wave solution
of (35) and obtain some integral properties of (35), that will be used as a check on numerical
accuracy in section 7. To accomplish this we follow similar derivations of Jones and Roberts
(paper IV) for the local model.

The flow at large distances from a classical vortex ring is dipolar; similarly, the solutions
of (35) as|x| → ∞ has the form

9 ≈ 1− imz

[z2 + (1− 2U2)r2]3/2
+ · · · (53)

wherem is called ‘the stretched dipole moment’ of the wave. We relatem to the momentum,
p, given in (36) by

4πm = p +U
∫ [

1− |9|2 − Re(9)

(
1−

∫
|9(x′)|2V (|x− x′|) dx′ − χ |9|2(1+γ )

)]
dx.

(54)

Next we may replace9 by9−1 in the first integral of (28), integrate by parts discarding
the vanishing surface integral, and obtain

E = pU + 1
4

∫ (
1−

∫
|9(x′)|2V (|x− x′|) dx′ − χ |9|2(1+γ )

)
|1−9|2 dx. (55)

7. Vortex rings of small radius

In this section we address the problem of numerically finding the sequence of vortex rings of
small radius. This research has been motivated by the famous conjecture of Onsager (Donnelly
1974) that the roton can be pictured as ‘the ghost of a vanished vortex ring’. So we would
like to know theE–p configuration of the sequence of such vortex rings and, starting from
the moment the circulation disappears, the configuration of rarefaction pulses. We solved (17)
numerically in the three-dimensional axisymmetric case in a frame of reference moving with
the velocityUF :

−2i9t + 2iUF9z = 9rr +
1

r
9r +9zz +9

(
1− χ |9|2(1+γ ) −

∫ ∞
0

∫ ∞
−∞

∫ 2π

0
|9(r ′, z′)|2

×U
(√

r2 + r ′2 − 2rr ′ cos(θ − θ ′) + (z− z′)2
)
r ′ dθ ′ dz′ dr ′

)
. (56)

The velocityUF is chosen to retain the minimum of|9| at the centre of the frame. We
used finite differences and the Raymond–Kuo radiation boundary condition (Raymond and
Kuo 1986) allowing the outgoing radiation to escape from the integration box. Details of the
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numerics are discussed by Berloff (1999). We started our calculations from the large vortex
ring (R = 20) with the core of the rectilinear vortex found in section 3, so that the initial
configuration is close to the exact solution.

Noreet al (1993) studied the acoustic behaviour of the local model and demonstrated that
the dispersive effects due to the quantum stress tensor become noticeable for some range of
the width-to-height ratio of the travelling pulse. Similar dispersion takes place in the nonlocal
model (56). To minimize this, we introduce a small dissipation into equation (56). The most
physically relevant way of doing this for the local model was suggested by Carlson (1996).
In real helium, even in the low-temperature range, normal fluid is present that is coupled to
the superfluid and, through its viscosity, provides a high wavenumber sink. When modified
to include mutual friction with the normal fluid, the superfluid Euler equation becomes (e.g.,
Khalatnikov 1965)

v̇s +∇
v2
s

2
= −∇(µ− ζ3∇ · (j − ρvn)− ζ4∇ · vn) (57)

wherej = ρv is the mass current,µ is the chemical potential,vn is the velocity of the normal
fluid, andζ3 andζ4 are the coefficients of bulk viscosity. When the first dissipative term of
(57) is introduced into the model (56) via the Madelung transform the nonlocal model with
dissipation becomes

−2i9t + 2iUF9z = 9rr +
1

r
9r +9zz +9

(
1− χ |9|2(1+γ ) −

∫ ∞
0

∫ ∞
−∞

∫ 2π

0
|9(r ′, z′)|2

×U
(√

r2 + r ′2 − 2rr ′ cos(θ − θ ′) + (z− z′)2
)
r ′ dθ ′ dz′ dr ′

)
−2ζ39

(
∂

∂t
+ vn · ∇

)
|9|2. (58)

We assume that the normal fluid is at rest in the reference frame moving with the ring. In our
calculationsζ3 was taken to be of order 10−2. First, the initial field was evolved according to
the dissipative model (58) until the dispersive effects were sufficiently minimized. After that,
ζ3 was set as zero and the calculations were continued using the nondissipative model (56). We
emphasize that the solutions we present below satisfy the non-dissipative Hamiltonian system.
After the emission of acoustic waves the system settles down to a solitary solution travelling
with constant speed. The fact that the system reached the solution of (35) is also confirmed by
the equality of two expressions (28) and (55) for the energy.

After the solitary wave solution is reached and the values of the stretched momentum,
impulse, radius, and energy are recorded, we use this solution as the initial condition for the
equation with dissipation (58). Dissipation slows down the motion of the vortex ring and
reduces its radius. After that, we again set the dissipative parameter to zero and continue
calculations for that new starting radius, thereby obtaining another solution on the vortex ring
sequence.

In table 1 we showE as calculated from (32),p from (36), andm from (54), for
equation (17) with the potential (12b). The values of parameters in (12b) were taken as
χ = 0.2,A = 0.7, B = 0.5, α ≈ 11.8539, β ≈ −10.5595,δ ≈ 4.7217, andη ≈ −4.9824,
so that in (34)c ≈ 0.009 close to the hollow core vortex. The value ofp was checked by
computing (55). Figure 2 gives the plot of the ring with radiusR = 12.6 in terms of the
densityρ. As the speed of the vortex ring approaches the Landau critical velocity, defined as
UL = ωL/kL where(kL, ωL) are the points on the dispersion curve whereω/k = dω/dk,
and which in our units isUL ≈ 0.19 (which corresponds to 58.4 m s−1), it apparently loses
its stability and evanesces into sound waves. In figure 3 we show the time evolution of the
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Table 1.

U E p m R

0.14 690 3390 270 13.1
0.15 646 3056 248 12.58
0.16 589 2685 218 11.89
0.167 521 2260 181 10.74
0.174 474 1990 159 9.93
0.189 417 1657 132 8.64

Figure 2. The density plot of the cross section of the axisymmetric vortex ring with radiusR = 12.6.
The darker regions correspond to an increase in density.

momentum and energy of an axisymmetric solution of equation (17) with the potential (12b)
havingp = 1424,E = 373, so that the starting velocity of the ring is slightly above the Landau
critical velocity. The total momentum and energy in the system are conserved, so the observed
decay inp andE is balanced by energy radiated out of the computational boxes by sound
waves. In figure 4, we show the time evolution of the same initial state by means of contour
plots of the scaled density|9|2.

To understand this instability better, let us first imagine that normal fluid is present, and
is at rest in the computational frame in which the vortex is stationary. Therefore, at infinity
there is a uniform counterflowU (= vn − vs) between normal and superfluid components,
whereU = U lz is the velocity of the vortex in the laboratory frame. In the absence of friction
the dispersion relationship for the superfluid at infinity is merely Doppler shifted, i.e., the
frequency (in the computational frame) for the wave with wavevectork is ωD = ω − U · k,
whereω(k) is given by the dispersion relation for stagnant superfluid. IfU > UL, thenωD < 0
for all k in some neighbourhood ofkL = kLlz. Let us now recognize the existence of the
friction between components that always exists at finite temperature. Let us model that friction
using (58) and suppose thatζ3 � ωL/k

3
L. It is easily shown from (58) that, if9 = 1 + εψ

whereε � 1 and Re(ψ) = exp[i(ω̄t − k · x)], then

ω̄ ≈ ωD +
iζ3k

2

2ω(k)
ωD. (59)

It is clear that, ifU > UL, thenIm(ω̄) < 0 in the neighbourhood ofk = kL in which
ωD < 0, so that those modes are unstable. It should also be remarked that, even whenζ3 is
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Figure 3. Time evolution of energy (a) and momentum (b) of an axisymmetric solution of
equation (17) with the potential (12b) havingp = 1424,E = 373; the starting velocity is slightly
above the Landau critical velocity.

zero, numerical dissipation will play its role in creating instability whenU > UL. So our
vortex sequence necessarily terminates at the point where the speed of the vortex becomes the
Landau critical velocity.

8. Conclusion

We derived a new model of superfluid helium4He with a realistic phonon–roton-like spectrum.
Our strategy was to introduce as few phenomenological parameters as possible, so that the
modifications made to the Ginsburg–Pitaevskii local model (7) are minimal. First, as was
shown by Berloff (1999), if theδ-function potential is simply replaced by a nonlocal potential
the resulting model possesses nonphysical mass concentrations, so that higher-order nonlinear
terms have to be introduced to prevent the creation of such concentrations and the formation
of catastrophic singularities. Such a higher-order nonlinearity was added following the ideas
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Figure 4. Time evolution of the initial state withp = 1424,E = 373, with the starting velocity
slightly above the Landau critical velocity as equidensity surfaces of the scaled density|9|2.

of density-functional theory. For this model we showed that the vortex core parameter and
the healing length can be brought into agreement, so that the energy of the large vortex rings
coincides with experimental observations.

Axisymmetric solutions for the resulting nonlocal Schrödinger-type equation (17) were
analysed analytically and numerically. A family of axisymmetric solitary vortex rings has been
derived numerically. An interesting result emerged from these numerical calculations: when
the velocity of the vortex ring reaches the Landau critical velocity the ring becomes unstable and
evanesces into sound waves. For any ring travelling with speed greater than the Landau critical
velocity, the amplitude of the far-field solution will not decay exponentially at infinity, which
makes the existence of such a ring impossible. One question that remains open is whether there
is a cusp in the energy–momentum plane as occurs in the Ginzburg–Pitaevskii local model
(7). The existence of an upper branch of rarefaction pulses having velocities that approach the
velocity of sound was established for the potential that gives positive dispersion for smallk.
As these axisymmetric solutions are unstable, it is most probable that the entire upper branch
of these solutions cannot be calculated by a time-stepping scheme. The alternative would be
to solve the discretized equation (35) for specified values ofU by Newton–Raphson iteration,
and that requires matrix inversion at each iterative step. Because of the nonlocality of the
potential in (35) the resulting matrices are not sparse, and this will lead to severe numerical
difficulties. Also, the fate of the vortex ring as we proceed by increasing the velocity past the
Landau critical velocity is not completely clear at the moment.

One of the goals of this paper is the same as that of an earlier paper in this sequence
(paper IV): to clarify Onsager’s concept of the roton as ‘the ghost of a vanished vortex ring’.
We hoped that the transition from the vortex ring to the sound pulse and the concomitant loss
of vorticity would occur close to the roton minimum in energy–momentum space, or, possibly,
close to the point where the group velocity and the phase velocity are equal (the Landau critical



Motions in a bose condensate: VI 5625

velocityUL). Our calculations show that, indeed, there is a point on thep–E plane where the
ring ceases to exist and whereUL = ∂E/∂p, but this point lies far from the roton minimum.

Finally, we make a speculative remark on how the idea of the roton as a ghostly vortex
ring might be vindicated. As we have a great variety of potentials that lead to the Landau
dispersion curve we can tune the parameters so that the lineE = ULp, meets thep–E curve
for the family of the vortex rings, to allow this sequence of vortex rings to be terminated at
a lower energy and momentum level. Whether this process will lead to coalescence with the
roton minimum is the subject of our future investigations.
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